Ay

Attorney Docket No. 028108-0203

WEB SERVICES METHOD AND SYSTEM

oo1] This application is related to U.S. Provisional Patent Application No. 60/469,061, filed
May 7, 2003, from which priority is claimed, and which is hereby incorporated by

reference in its entirety, including all tables, figures, and claims.

BACKGROUND OF THE INVENTION

Field of the Invention

002 The invention relates generally to computer networks. In particular, the. invention relates
to systems and fnethods for the creation, configuration, deployment, use and management
of services that may be provided on, for example, the world wide web.

Related Art

0003) The information contained in this section relates to the background of the art of the
present invention without any admission as to whether or not it legally constitutes prior
art.

0004} In today’s information-intensive, networked business environment, many businesses or
enterprises rely heavily on the provision of services to customers or clients through
networks such as the Internet. These services are typically automated and must be
flexible in recognizing the client and directing the client’s requests and/or information to

the éppropriate server, for example.

DLMR237702.1

(0005}

[0006]

DLMR237702.1

Attorney Docket No. 028108-0203
The management of such systems has undergone a significant evolution in recent years.
This evolution has been necessitated in part by the diversity of clients, varying forms of
communication, and the range of services provided by the enterpris—e. For example, the
clients may be individual users or other enterprises. Further, communication forms may
now include wireless systems. Thus, the enterprise must be able to recognize clients
communicating through different systems in diffeﬁng protocols such as hypertext transfer
protocol (HTTP/HTML), simple object access protocol (SOAP), or wireless access
protocol (WAP), among others. Still fﬁrther, the enterprise itself may provide a variety of
services. For example, a particular enterprise may perform multiple sets of services for
clients as needed. Each such service may, in turn, be required to communicate with
another service, either internal or external to the enterprise. A system for managing these
services must be robust enough to accommodate all these variations.
Existing enterprise web services management solutions, such as Enterprjse Application |
Integration (EAI), represent relatively expensive ways of communicating between
businesses and services. Generally, one of the greatest cost factors in the deployment and
maintenance of these solutions results from the inherent proprietary nature and the
incapability of seamlessly integrating with cher systems or services. These current
solutions tend to have many drawbacks resulting from this tight coupling, from reliance
on client-server architecture, and from lack of flexibility, scalability and transparency.
Further, these systems tend to be heavily centralized, making them susceptible to

catastrophic failures.

[0007]

{0008]

(0009]

[0010]

[0011]

[0012]

[0013]

[0014]

[0015]

DLMR237702.1

Attorney Docket No. 028108-0203
It would be desirable to achieve a management method, arrangement or system which
provides a distributed architecture which results in more flexibility, scalability and

interoperability with other systems and services.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following, the invention will be explained in further detail with reference to the
drawings, in which:

Fig. 1 is a diagrammatic illustration of a web services arrangement implementing an
embodiment of the invention;

Figure 2 is a schematic illustration of an embodiment of the transaction adapter module
according to the present invention;

Figure 3 is a schematic illustration of an embodiment of the service broker according to
the present invention;

Figure 4 is a diagrammatic illustration of an embodiment of the service engine of the
service broker illustrated in Figure 3;

Figure 5 is a diagrammatic illustration of an embodiment of a service node in the service
engine illustrated in Figure 4;

Figure 6 is a diagrammatic illustration of one embodiment of a graphical user interface
(GUD for use with the present inventfon;

Figures 7A-7F illustrate screen shots of an embodiment of a GUI for use with the present

invention;

[0016]

[0017]

[0018]

[0019)

(0020]

[0021]

[0022]

DLMR237702.1

Attorney Docket No. 028108-0203
Figure 8 is a diagram illustrating the processing flow for a client request in a system
according to an embodiment of the present invention;
Figure 9 is a diagram illustrating the control flow for a client request in a system
according to an embodiment of the present invention;

Figure 10 is a diagram illustrating an embodiment of the policy structure according to-an

embodiment of the present invention,

Figure 11 illustrates an implementation of the policy structure of Figure 10 in the
platform of the arrangement illustrated in Figure 1;

Figure 12 is an exemplary illustration of one implementation of security policy in an
embodiment of the present inventipn; and

Figure 13 illustrates an arrangement including multiple service brokers in an extended

enterprise.

DESCRIPTION OF CERTAIN EMBODIMENTS OF THE INVENTION

The present invention provides a system and a method for managing ;dnd configuring web
services. Embodiments of the invention allow businesses, or enterprises, to model
business processes in service-oriented, rather than product-oriented, manner. The
disclosed embodiments of the invention offer significant improvements in flexibility and
cost of the management of services available through networks such as the Internet. A

preferred embodiment of the system takes advantage of several aspects of the invention,

[0023]

[0024)

DLMR237702.1

Attorney Docket No. 028108-0203
including a matrix technology gateway, a component-based architecture and a graphical

user interface.

Matrix Technology Gateway

An aspect of the invention, referred to herein as “matrix technology gateway”, allows for
an integrated system in which various components are de-coupled and allow
communication from any front-end user to any back-end resource to fulfill a client
request. Figure 1 illustrates one embodiment of an arrangement according to the present
invention in which a matrix technology gateway méy be implemented. The arrangement
100 allows a client 102 to access services 104 that may be offered through a business
process 106. The client 102 may be an individual user accessing the services 104
through, for example, an Internet service provider (not shown). In other embodiments,
the client 102 may be an application program interface (API) client requesting one or
MOre Services.

Similar to the variations in the nature of the client 102, the requests from the client 102
may also vary in their format or protocol. For example, a client who is an individual user
is likely to be using a web browser. Requests from this client are likely to use the hyper
text transfer protocol (HTTP/HTML). Other individual clients may use wireless devices
for such requests, and these requests would use the wireless access protocol (WAP). Still
other clients may use different protocols, including simple object access protocol

(SOAP), a messaging protocol based on the extensible markup language (XML).

(0025]

[0026]

(0027}

DLMR237702.1

Attorney Docket No. 028108-0203
A web-services platform 110 is provided to manage the interaction between the client 102
and the services 104. The platform 110 includes a transaction adapter module 120 for
receiving requests from the client 102. The transaction adaptef module 120 is adapted to
receive the requests' in any number of predetermined protocols, to extract the query and to
translate them into a standard-based format, such as XML. As indicated by the double-
arrowed line 103, the transaction adapter module 120 may also be used to translate
responses to the appropriate protocol for the client 102. The transaction adapter module
120 is described in further detail below with reference to Figure 2.
Referring again to Figure 1, the platform 110 also includes a service broker 130. The
service broker 130 can receive signals from the transaction adapter module 120, extract a
query, and use its resources to fulfill the client request. In this regard, the service broker
130 interfaces with a query adapter module 140 provided in the web-services platform

110. The query adapter module 140 is similar to the transaction adapter module 120 in

many regards, but is adapted to allow the service broker 130 to access back end systems

108 which may be fequired to fulfill a client request. The service broker module 130 is
described in detail below with reference to Figures 3-5.

Referring now to Figure 2, the transaction adapter module 120 will be further described.
The transaction adapter module 120 is adapted to receive external transaction requests
from clients, as described above. The transaction adapter module 120 may be capablé of
screening the transaction request through admission control and authentication, for

example. Further, the transaction adapter module may be provided with the capability to

[0028]

[0029]

[0030]

DLMR237702.1

Attorney Docket No. 028108-0203
check for viruses embedded in the transaction requests, for example. This security aspect
of the adapter is described in detail below as part of the description of component—baséd
architecture. As illustrated in Figure 2, the transaction adapter module 120 includes a
request intake module 124 and a policies module 126.

The request intake module 124 includes a request director module 122. The request
director module 122 is capable of determining the particular client type. For example, the
director module 122 may be provided with software, hardware or firmware to determine
whether the request is being received from an HTTP/HTML client, a WAP client or a
SOAP client. The director module 122 may be adapted to recognize any number of
known client types and can be modified for additional client types as they become
available or necessary. As described below with reference to the graphical user interface
(GUD), the configuration of the adapters, including adding or removing adapters, can be
performed dynamically without interfering with the remainder of the system.

The request intake module 124 is also provided with a plurality of adapters, such as
HTTP/HTML adapter 128. The director module 122, after determining the client type,
forwards the request to the appropriate adapter 128. Each adapter 128 converts a client
request from the client’s format to a format that may be specific to the platform 110. In
one embodiment, each adapter 128 converts the message to an XML-based message.
More preferably, the converted message is a SOAP meésage.

The policies module 126 contains policie's relating to various aspects of the platform or

services. For example, the policies module 126 may contain policies relating to security

7

[0031]

[0032]

DLMR237702.1

Attorney Docket No. 028108-0203
(such as authentication) and available resources. Further, policies relating to each client
type, or protocol, may be provided. The policy aspects are described below in further
detail as part of the description of component-based architecture.
When a client request is received by the transaction adapter module 120, it is first
received by the director module 122. The director module 122 determines the client type
and directs the message to the appropriate adapter 128. The policies from the policy
module 126 may be applied to each client fequest at either the director module 122, the
adapter 128, or both. For example, iﬁ one embodiment, the security policies may be
applied when the message is first received by the director module 122 to ensure the client
request is valid. The protocol-specific and resources policies may be applied at a later
point within the request intake module 124. The client request may be processed by the
adapter 128 to forward the client request to the service broker.
The forwarded request may be a message presented to the s‘ervice broker using Web
Services Description Language (WSDL) deﬁﬁition for the service broker to generate:-
SOAP messages. The advantage of using a platform-independent language such as
SOAP is that the transaction adapter module and the service broker are effectively de-
coupled and are made independent. In this regard, the de-coupling allows the Varioﬁs
components to operate independently, and allows them to be integrated with other
components. For example, one service broker may easily communicate with one or more
transaction adapter modules. Thus, each_ module may replace only a portion of an

existing system, such as a legacy system, providing a modular replacement capability.

(0033)

[0034]

[0035]

[0036]

DLMR237702.1

Attorney Docket No. 028108-0203

Thus, the transaction adapter module 120 allows any client to submit transaction requests
to a service broker. In one example, if a user named Joe Smith requests a summary of all
his bank accounts, the client request may appear as:

uri= <http://query.account.com>

query= 'account summary'

account = 'all’

type = 'brief’

name='Joe Smith'
A WSDL definition may be provided for each requested service or set of services. For
example, for the uri above, the following WSDL definition may be applied to the client
request:

<?xml version="1.0"?>

<wsdl:definition name = “accountQuery”

etc .

For additional detail on WSDL, reference may be made to the WSDL specification,

available at http://www.w3.org/TR/wsdl, which is hereby incorporated by reference in its

entirety. The transformed SOAP message to be forwarded to the service broker may
appear as:

<SOAP-ENV:Body>

<g xsi:account='all'/>

<qg xsi:type='brief'/>

<g xsi:name='Joe Smith'/
This message may then be forwarded to a service broker for processing or fulfillment of
the client request regardless of the client type of the original request. Figures 3-5

illustrate various aspects of one embodiment of a service broker 130 according to the

present invention. The service broker 130 receives the converted client request from the

[0037]

[0038]

DLMR237702.1

Attorney Docket No. 028108-0203
transaction adapter module 120 (as described above witb reference to Figure 2) and
functions to fulfill the request using the various services provided by the enterprise. In
doing so, the service broker 130 may access services and resources through the query
adapter module 140 (Figure 1). dnce the requests are fulfilled, the service broker 130
prepares a response for the client. The service broker 130 then forwards the response to
the transaction adapter module for forwarding to the client. In this regard, the service
broker module 130 serves as an intelligent hub for the fulfillment of the client requests.
In one embodiment, the service broker 130 uses a scripting language, such as BPELAWS,
to define the logic. As described below, the logic may be used to define nodes of services,
thereby facilitating efficient configuration of the services and related policies. In this
regard, a graphical user interface (GUI) may be provided to allow an administrator to

interact with the execution of the scripting. One embodiment of a GUI is described

below.

-In the embodiment illustrated in Figure 3, the converted message is received in the

service broker 130 by a query isolation module 132. The query isolation module 132
parses the converted message to retrieve one or more queries per the client request. In
this regard, a query may identify one or more transactions being requested by the client.
If a client request contains multiple queries, the query isolation module 132 may separate
each query into a discrete téék. For example, in the above example, the XML/SOAP
message received from the transaction adapter module 120 requested account information

for all accounts. The query isolation module 132 may use transaction definitions

10

[0039]

[0040]

[0041]

DLMR237702.1

Attorney Docket No. 028108-0203
provided within the query isolation module 132 to determine that the transaction requires
a query of account parameters and a second query of individual accounts.

The parsed queries are transmitted by the query isolation module 132 to a dispatcher 134.
The dispatcher 134 provides a management function which may include, for example,
allocation of resources. ’fhe dispatcher 134 may be linked to a configuration module 136
which contains policies relating to particular clients and resource allocation. These
policies are generally applied on a query-by-query basis. The dispatcher 134 may also
function to prioritize queries based on, for example, the nature of the client. For example,
if the client is a partner of the eﬂterprise entitled to priority, the dispatcher 134 may
bypass a queue and_immediately allocate resources for the query.

The dispatcher 134 passes the queries to a service engine 138. The service engine 138
operates on the SOAP or XML message and, using a set of stored service definitions,
maps thé query to one or more service nédes. In ‘one embodiment, the service engine 138
uses XML style sheets (XSLT) or trees generated for each query or service. In this
regard, each query may be mapped to a particular node or set of nodes within a service.
In other embodiments, the service enéne 138 may operate on the; SOAP message by a
variety of other means, including transformations, native operations and programs, and
calling other web services.

Figure 4 illustrates one embodiment of the service engine 138 according to the present
invention. Services A 142, B 144 and C 146 represent arbitrary services that may be

currently selected to operate in a particular instance of the engine. Contained within each

11

[0042]

[0043)

DLMR237702.1

Attorney Docket No. 028108-0203
service are operational nodes, such as nodes 145, 147 in service B 144. Each service may
be configured with an arbitrary number of nodes as required for the particular operation it
is to perform.

The arrangement of various operations into services of nodes is preferably achieved
through embedded logic or artificial intelligence. The arrangement is preferably
optimized to minimize the costs associated with the services or to maximize a return on
an investment into the enterprise. In this regard, each service 142, 144, 146 includes a
cluster of nodes or operations which, for example, are most likely to be executed as a
group. The embedded logic or artificial intelligence may generate an optimum
configuration. By optimizing, the execution times and maintenance costs for the services
to fulfill a client request can be substantially reduced. At the same time, flexibility is
retained since each operation may be part of more than one service and each service can
be linked to dther services, as described below.

The optimization of the configuration may be achieved through any of several known

- mechanisms. For example, a rules-based engine may be used to yield an optimum

configuration based on a set of predetermined rules. In other embodiments, a tree
optimizing algorithm may be implemented. In still other embodiments, a “peep hole
optimization” may be utilized, for example, to examine a plurality of operations for
evaluation of the benefits of merging two or more of the operations. Other optimization

techniques will be apparent to those skilled in the art.

12

[0044]

[0045]

(0046]

DLMR237702.1

Attorney Docket No. 028108-0203
In certain embodiments, the optimization may be made adaptive. In this regard, the
embedded logic or artificial intelligence may periodically evaluate trends or tendencies in
the client requests to re-optimize the configuration. Logs of client requests rﬁay be used
for such an evaluation.
Each node within a service represents a particular operation to be performed pursuant to a

y

client request. Each node may correspond to a specific operation or to another service.
For exarhple, it would be possible for node 147 of Service B 144 in Figurg 4to
correspond'to an instance of Service A 142. Thus, when Service B 144 is executed,
Service A 142 is executed as correspbnding to node 147, in addition to the execution of
the other nodes in Service B 144, such as node 145.
Each service 142, 144, 146 includes one or more nodes, each node corresponding to an
operation or a service. The service engine 138 uses XSLT to map each node or operation
to an appropriate back-end, or query, adapter in a query adapter module 140 (shown in
Figure 1). Thus, a query is mapped to a service, which in turn is mapped to one or more
nodes and operations, each of which are mapped to an appropriate back-end adapter. In
this regard, the service engine 138 encapsulates each operation request in an XML/SOAP
message for transmission to back-end service through a query adapter. The encapsulation
may alternatively be performed by the query adapter. The query adapter can then convert
the XML/SOAP message to a format or protocol appropriate for the desired service.
Thus, as described above with reference to the transaction adapter module, the query

adapter module 140 is also effectively de-coupled from the service broker module 130.

13

[0047]

[0048]

DLMR237702.1

Attorney Docket No. 028108-0203
The query adapter module 140 may also apply a set of policies, similar to the policies
described above with reference to Figure 2 and described in detail below as part of the
description of component-based architecture.
Within the service engine 138, the responsibility for the client request may be transferred
to the service accommodating the request. Further within each service, the responsibility
may be handed off to the various nodes as an operation is completed at each node. In this
regard, the transfer of responsibility may be achieved through a SOAP/WSDL message.
The SOAP/WSDL message can retain an identifier of the client submitting the request
including the client type. In this manner, once the request has been fulfilled, the service
engine 138 is able to transfer the response to the appropriate adapter in the transaction
adapter module.
Figures 8 and 9 illustrate the overall process and control flow of a client request in the
arrangement illustrated in Figure 1. Referring first to Figure 8, a client request 202 is
received by the transaction adapter module as, for example, a SOAP-based request. The
client request 202 may be parsed into a transaction query 204 in a standard-based
language such as XML for validation. Validation may include application of several
aspects of policies including security. Upon validation, the query 204 may be forwarded
to the service broker as a service request 206. Again, a standard-based language such as
XML is preferably used. The service request 206 may be mapped to one or more

operations 208 requiring access to one or more back-end adapters and services. Once the

14

[0049]

[0050]

DLMR237702.1

Attorney Docket No. 028108-0203
client’s request has been fulfilled, the service broker can prepare a response 210, 212 for
forwarding to the client.

Figure 9 illustrates the control flow of a client request processed.by the arrangement
illustrated in Figure 1. A client request 220 received by th-e transaction adapter module
may first require authentication and/or validation prior to being admitted to the platform.

While retaining control of the client request 220, the transaction adapter module may

perform validation and authentication through, for example, services lookup 222 and

security authentication admission 224. Upon satisfaction of these pre-defined criteria or
policies, the transaction adapter module may transfer control to the dispatcher (through
line 226), which forwards the request to the service broker module. The service broker
module may apply additional policies at this level, as described in detail below. Based on
the application of these policies, the service broker module may process the client’s
request, which may be mapped to one or more operations 228 requiring access to one or
more béck-end services. Upon fulfillment of the client’s request, the service broker
module may prepare and forward a response 230, 232 to the client.

Thus, the matrix technology gateway provides a platform that can be integrated, yet
allows the service broker to be de-coupled from the transaction adapter module and the
query adapter module. The use of a platform-independent or universal language, such as
XML/SOAP, provides access for any client type to any service or back-end resource.

Further, the use of embedded logic or artificial intelligence to optimize configuration 6f

15

© [0051]

[0052]

[0053].

DLMR237702.1

Attorney Docket No. 028108-0203
services provides the enterprise with maximum benefit. Thus, complete flexibility is
achieved in three dimensions: client'type, services and back ends.

Further flexibility and integration may be achieved through an extended enterprise
arrangement as illustrated in Figure 13. In this arrangement, two or more service broker
modules may be linked to provided even greater iﬁteraction between a larger set of
clients, a larger set of services, and a larger set of back ends. For example, two partner
enterpri;ses may link their service broker modules to combine their services and resources
without significant additional expense. This can be achieved due to the de-coupled nature

of the three stages.

Component-Based Architecture

Another aspect of the invention is the component-based architecture whjchl allows for a
ﬁexible and scalable arrangement with a deep level of conﬁgurébility. In this regard,
various-policies can be implemented and applied at any selected level of resolution
desired by a configuration manager. |

F i@e 10 illustrates one embodiment of a policy structure according to the present
invention. In the illustrated policy structure 300, different aspects of policies are
configurable at multiple levels 310, 320, 330. At an uppermost level, the transactiop
level 310, a set of policies are configurable, including security management, performance

management, fault management, policy management, resource management and customer

16

Attorney Docket No. 028108-0203
- management. In addition, the uppermost level, the transaction level 310, also includes
admission policies which are applicable to each client request received by the enterprise.
0054] In a similar manner, each level 320, 330 below the transaction level 310 allows

configuration of the various policy aspects. As illustrated in Figure 10, the service level
320 and the adapter level 330 contain configurable policy aspects including security
management, performance management, fault management, policy management, resource
management and customer management. The various policy aspects are described below

and are preferably configurable through the graphical user interface (GUI).

[00s5] Admission Policy. Admission policy allows configuration of admission classes. Each
admission class may specify further policy aspects, such as resource and security.
Additionally, admission policy configuration may specify access lists and password lists.

00ss] Security Management. Security is an integral part of the framework of the above-

described system and is preferably dynamically configurable. The security management
configuration may include an application-level firewall to guard against hacking. In a
preferred embodiment, the security management is configurable at each level. At the
transaction level, in addition to the firewall, security management may include
authentication through use of user ID’s and passwords, digital signatures, certificates,
trusted sites and the-like. Further, transaction-level security management may include
XML digital signature to prevent exposure to malicious material such as scripted worms.
At the system level, security management relates to the execution environment. At the

link level, security management is associated with adapter security policies. Security at
17

DLMR237702.1

[0057]

[0058]

[0059)

[0060]

DLMR237702.1

Attorney Docket No. 028108-0203
this level may be implemented at the encryption/decryption layer, data transport layer or
the firewall layer. Each parameter associated with security management at each level
may be provided with a default, but may be independently configurable by the user.

Resource Management. Resource management defines the availability of system

resources and may be used as a reference in admission control. Resources may be
diverse, including available ports or protocols, a maximum number of instances per |
component and requést timeouts. Resource management may include policy-based
clustering, which may also be configurable by the user. Such clustering may include
priority routing and resource allocation, for example, of partners.

Service Management. Configurable service management may include a service directly

listing available services. A security set and a resource set per service may be defined
through service management. Service management may interact with admission
requirement policies.

Performance Management. Performance management may include policies and

parameters relating to generation of alarms of faults. It may also include monitoring of
service performance, including execution times, failures, retries, number of hops, etc. In ‘
addition to service performance, resource usage may also be monitored. In this regard,
parameters relating to resource usage and load balancing may be monitored and event
logs and fault triggers may be defined.

Fault Management. The system includes a dynamic component-based fault management.

In this regard, faults are preferably cleared at the lowest possible level, depending upon

18

[0061]

[0062]

DLMR237702.1

Attorney Docket No. 028108-0203
the severity, granularity, context and policies relating to the particular fault. The
transaction state may be cached at each level to facilitate recovery. Fault management
and the related failure recovery may be administered at each level, including transaction
failure, system failure and link-level failure. For transaction-level failure; fault
management may define a level of rollback of transaction implemented as check-points
and restarting of transactions at various levels. Fault management may also provide for
alternatives available in the event of a failure. The alternative operations may be initiated
upon detection of the failure. For system-level failures, fault management may include
multiple registries and multiple broker instances. At the link level, fault management
may include providing multiple port connections. Further error recovery and alternate
routes may be provided.

Customer Management. Customer management may include maintaining customer

profiles, including client type and identity. Further, billing information, customer activity
logs and access policy may be maintained.

As noted above, each policy aspect is preferably configurable at each level. Figure 11
illustrates such an implementation in the platform 110 of Figure 1. A user may access the
platform through a GUI and can access each component at each level. In the illustrated
example, the user can access each adapter in the transaction adapter module 120, each
service in the service broker 130 and each back-end adapter in the query adapter module
140. Access of these components is indicated by the lines 170. Access of each

component includes configurability of each policy aspect (indicated by hubs 172, 174,

19

[0063]

[0064]

DLMR237702.1

Attorney Docket No. 028108-0203
176, 178). Thus, the user can configure each of security management, performance
management, fault management, policy management, resource management and customer
management for each component at each level. Preferably, a GUI with a drag-and-drop
capability is provided to facilitate configuration by the user.
In one embodiment, the service engine 138 can apply a set of policies to each service 142,
144, 146. In this regard, by allowing clustering of the operations into services, the
present invention allows a configuration at any desired level. For example, Figure 5
illustrates one embodiment of a configuration according to the present invention. In this
illustration, a service of any number of nodes or operatidns may be configured with a
single set of policies 152 applied prior to the access of the services of Service A 142 and
a single set of policies 154 after accessing the service. For example, a set of security
policies may be applied to a set of services together. In order to apply different policies
to services within a node, the service engine may be re-configured to break up the node
into two or more nodes with different policies applying to each node. Thus, any level of
resolution at which configuration is desired may be achieved at the lowest possible cost.
To reduce cost, a large number of services may be included within a single node and may
use tﬁe same set of policies.
Similarly, policies can be applied at any step in the process at any desired level. For
example, at the transaction adapter illustrated in Figure 2, a first set of policies may be
applied to all levels of users, or a unique set of policies may be applied to two or more

groups of users. For example, a single set of services policies may be applied to users of

20

[0065]

[0066]

DLMR237702.1

Attorney Docket No. 028168-0203
all client types, while different sets of security policies are applied to each client type.
This may be instituted since some client types may be more prone to security problems,
such as virus susceptibility. Further, a set of policies may be applied at the director
module 122, and a different set of policies may be applied at each adapter.

In embodiments according to the present invention, changes in policies may be
implemented while the application platform (MTG) continues to run. In other words,
policies may be updated, added or deleted without taking the system offline and
interrupting business flow. In this regard, the policies may be maintained in a database,
through which changes, additions or deletions in policies may be implemented at any
desired level. Access to the database may be facilitated by a GUI, as described below.

In a preferred embodiment, changes, additions or deletions in policies can be made
through the use of a database. The policies are stored as a dataset in a database which is
made accessiblé,to all client transactions. The database is also accessible to an authorized
administrator with rights to update the policies through changes, additions or deletions.
Once the administrator updates a policy in the policy dataset, the updated dataset is
available to the next activity in, for example, a client request. No delay is experienced,
the system is not required to be taken down, and the policy dataset can be accessed by the
immediately subsequent activity. The updated dataset can be used by all subsequent
activities until the dataset is agﬁin updated by tﬁe administrator. In this manner, the

policies can be updated seamlessly without any impact on the operation of the system.

21

(0067]

[0068]

[0069)

{0070]

DLMR237702.1

Attorney Docket No. 028108-0203
In another embodiment, any alteration in the policies causes a flag to be set. The flag
may be a simple one-bit element that is changed from O to 1 when one or more policies
are altered. In other embodiments, the flag may include a larger checksum value. A
separate process may be implemented to monitor the flag value. The monitoring process
may be implemented within the service engine, or it may be an external process. The
process may monitor the flag at regular intervals. Alteratively, the process may be
triggered by a predetermined event.
When the monitoring process detects a flag value indicating that one or more policies

have been altered, it initiates a policy upload resulting in recognition and implementation

of the revised set of policies. The upload may be configured according to the

requirements of particular systems and may include upload of the entire policy database.

Alternatively, a system may be implemented in which specific sets of policies or levels
may be uploaded. In this embodiment, when a policy is changed, added or deleted, a flag
specific to that policy may be set to signal an alteration. A single flag may be provided,
for example, for all policies at individual level or a particular policy at all levels. dther
combinations will be apparent to those skilled in the art.

Thus, the embodiments of the invention allow revisions to various policies to be
implemented in run-time. The architecture allows configuration at a desired level for
each component of the system. This may be accomplished for each of a set of policy

categories, including security.

22

[0071]

[0072]

DLMR237702.1

Attorney Docket No. 028108-0203

For security, the primary focus is external security based on link and message encryption

- and digital signatures to ensure privacy, trust and authentication. Security includes

encryption to provide message security and system security. Encrypted messages are
received by the system and are decrypted for extraction of the client request. However,
various levels of the message may be decrypted separately. For example, encrypted fields
within the SOAP rﬁessage may not be immediately decrypted to prevent exposure to
concealed data such as viruses. Once the source of the message (i.., client) has been
identified as a trusted client, the message may be completely decrypted.

Figure 12 illustrates an example the implementation of the security policies at various
levels. Figure 12 illustrates a plurality of client requests received by the enterprise, each
having security policies applied thereto. A first client request 402 is received by the
transaction adapter module, and security policies are applied. In the illustrated example,
the client request does not satisfy the configured security policies, and access is denied.
An error code message 404 is returned to the client. A second request 406 is received by
the transaction adapter module, and satisfies the security policies. Thus, the client request
proceeds to the system level. At this level, each client request may be parsed into 6ne or
more services. In the illustrated example, the request is parsed into three services 408,
412, 418. System-level security policies are applied to each service request 408, 412,
418, resulting in one service request 408 being denied. The remaining two service
requests 412, 418 are granted and are forwarded as sérvipe requests 414, 420 to the query

level. At this level, service request 414 is denied, resulting in an error code being

23

[0073})

[0074)

[0075)

DLMR237702.1

Attorney Docket No. 028108-0203
returned to the system level. The remaining service request 420 is granted and is
forwarded to the back-end adapter for fulfillment of the service (lines 422, 424) with a
message being transmitted to the system lével. The system level then transmits a partial-
success error code message 410 to the client due t6 failures of two service requests 408,
412.

In addition to security, other categories of policies may also be implemented on a
component and level basis. Such categories may includes resources, services, fault
management, etc. Again, these may be applied at any step of the process at any desired ‘

level of resolution. Thus, complete flexibility and scalability can be achieved.

Graphical User Interface

The configuration of each stage and management of the system, for example, may be
performed through a graphical user interface (GUI). The GUI may be implemented at
either a remote or a local management system. Further, since each stage is de-coupled,
re-conﬁgurafion of the individual stages may be performed without taking the other
stages off-line.

The GUI can serve many functions. First, it serves to present data in an understandable
format. Second it facilitateé manipulation and configuration of the data and/or system by
readily allowing additions or revisions of policies or additions or removals of various

adapters, for example. Third, it may include the above-described embedded logic or

24

[0076]

[0077]

[0078]

DLMR237702.1

Attorney Docket No. 028108-0203
artificial inteiligence for optimization of the configuration of services. Finally, it may
include certain associated services to facilitate policy management.

Figure 6 is a diagrammatic illustration of one embodiment of a GUI for use with the
present invention. The GUI 600 includes software for presenting information to a user in
an understandable format. Preferably, the information is presented in a graphical foﬁnat
as illustrated below with reference to Figures 7A-7F. In this regard, complex
relationships and information can be presented in a readily understandable and
manipulable format to a user. Thus, a user can, by simply clicking and dragging an icon,
for example, change the configuration of an aspect of the system.

The GUI 600 may also include the above-described embedded logic 610 for optimizing
the configuration of the services into clusters, for example. In this regard, the logic 610
may include, as inputs, information from the user or the service engine as to tendencies or
trends in the operation of the system. Thus, the embedded logic 610 can adapt and
reconfigure the services to optimize the services on a regular, ongoing basis.

The GUI may also be provided with a set of associated services 620 for facilitating
conﬁ@ation and implementation of the policies. These associated services may receive
inputs from the user as to the desired configuration and may determine the appropriate
implementation of the desired configuration. For example, the user may input two sets of
policies for two sets of users, one a preferred set and another a standard set. The
associated services 620 may then implement that desired configuration as two sets of

policies using additional information. For example, information from another source may

25

[0079)

[0080]

{0081]

DLMR237702.1

Attorney Docket No. 028108-0203
indicate that preferrgd users are WAP users, while standard users use all other protocols.
The associated services 620 may then configure the two set of policies with the first
applying to all users using WAP and the second to all other users.

The GUI may generate a logical structure in a work flow language such as BPEL4WS,
which is expressed as an XML file. Additionally, the GUI may generate policy
information, wilich is also represented as an XML document. In doing so, the embedded
logic 610 may dictate configuration of the polices at each level and at each step. The
embedded logic 610 may generate XML stylesheets to facilitate the configuration by
providing mapping information.

Figures 7A-7F illustrate the operation of an embodiment of a GUI according to the
present invention. The GUI is demonstrated in Figures 7A-7F as implementing a
configuration change in a readily understandable manner.

Figure 7A is a screen shot illustrating an overall view of a service for obtaining stock
quotes. The service 700 includes a set of front-end transaction adapters 710. In the
illustrated configuration, two transaction adapters are provided: Web FEA and Brew. A
service engiﬁe 720 receives the client requests through the transaction adapters 710 and
access services 740 through one or more query.adapters 730. In the illustrated
embodiment, a different transaction adapter is provided for each back-end service. The

service engine 720 includes a single cluster of two nodes.

26

Attorney Docket No. 028108-0203

[0082) Figure 7B illustrates an XML tree corresponding to the conﬁguration‘illustrated in Figure
7A. Note the number of nodes in the nodeList corresponds to the number of nodes in the
service engine 720.

oos3] Figures 7C and 7D illustrate an attempt by a user .to add another node to the service
engine 720. In this example, a new node is created by selecting a new function node in
the GUI (Figure 7D). A new node is then shown graphically as part of the service engine
720 (Figure 7C).

oos4) In Figure 7E, the new node is labeled and configured as being linked to oﬁe of the present
nodes. The new node is labeled as “newActivity” and is linked to one of the existing |
nodes.

[0085] Figﬁre 7F illustrates the updated XML tree after the implementation of the change in
configuration. Now the nodeList contains the three nodes, including the newly added
“newActivity” node. The new node is associated with a certain function which the user
desires to execute as part of the conferect.

ooss] Thus, the GUI enables fast and easy configuration or reconfiguration of the syste1;1. The
GUI may be used to easily change the configuration of other aspects of the system. In

particular, policy changes may be readily implemented.

oos7] While particular embodiments of the present invention have been disclosed, it is to be

understood that various different modifications and combinations are possible and are

27

DLMR237702.1

Attorney Docket No. 028108-0203
contemplated within the true spirit and invention. There is no intention, therefore, of

limitations to the exact disclosure or abstract herein presented.

28

DLMR237702.1

	2003-11-17 Specification

